
BELT: A Pipeline for Stock Price Prediction
Using News

Yingzhe Dong
School of Business Administration

Northeastern University
Shenyang, Liaoning, China
dongyingzhe99@sina.com

Da Yan
Department of Computer Science

The University of Alabama at Birmingham
Birmingham, AL, USA

yanda@uab.edu

Abdullateef Ibrahim Almudaifer
Department of Computer Science

The University of Alabama at Birmingham
Birmingham, AL, USA

lateef11@uab.edu

Sibo Yan
Freddie Mac

Washington, D.C., USA
sibo yan@freddiemac.com

Zhe Jiang
Department of Computer Science

The University of Alabama
Tuscaloosa, AL, USA

zjiang@cs.ua.edu

Yang Zhou
Department of Computer Science and Software Engineering

Auburn University
Auburn, AL, USA

yangzhou@auburn.edu

Abstract—Stock investment is a vehicle for many people to
grow their wealth. However, market downturns can cause huge
losses and need to be predicted for a timely sell. In fact, with
effective prediction, stocks are a good investment even during
periods of market volatility as many stocks are “on sale”.

News is an important source of signal for stock price move-
ment. However, stock analysts usually adjust their analysis
according to the news in a subject manner, and wrong judgments
can cause investors huge losses.

Twitter is a great source for breaking news, and provides
a timely stream of signals on stock trends. News on Twitter
also tends to have a great impact on the market due to the
large number of Twitter users. This paper proposes a data-driven
pipeline to timely incorporate Twitter news about a company into
a time series prediction model on the company’s stock price.
Our approach, called BERT-LSTM (BELT), extracts informative
features on stock price direction from Twitter news using the
state-of-the-art natural language processing (NLP) model BERT,
which are then used as covariates to a many-to-many stacked
LSTM model that also utilizes historical stock prices to predict
the direction of future stock price. Utilizing a carefully curated
stock news dataset, we fine-tune BERT to effectively identify those
news tweets that are relevant, and to extract NLP features that
are indicative of price rises and falls. All model parameters are
trained end-to-end to provide a data-driven and objective pipeline
to incorporate news signals so as to avoid subjective analysis.
Extensive experiments on real stock prices and Twitter news
show that BELT is able to predict stock prices more accurately
utilizing news information than if historical price data are used
alone for prediction, and beats StockNet which is the current
state of the art for news-based stock movement prediction.

Index Terms—stock, news, prediction, BERT, LSTM

I. INTRODUCTION

Stocks are an equity investment that represents part owner-
ship in a corporation. Investing in stocks can be tricky and
wrong judgments can cause huge losses. For example, the
stock market crash of 2008 occurred in September 2008, with
Lehman Brothers declared bankruptcy on September 15, and

money market funds lost $196 billion in the following days;
on September 29 alone, the Dow Jones Industrial Average fell
777.68 points in intraday trading. Until the stock market crash
of 2020, the 2008 crash was the largest point drop in history,
and it took years for the financial crisis to recover.

Unfortunate, we are now at a financial crisis crossroad
again with the COVID-19 pandemic that has caused over 5.6
million cases and 175,000 deaths in the US, and the Black
Lives Matter protests across the US and around the world
trigged by George Floyd’s death caused by police violence.
In fact, the coronavirus fear has caused five circuit breakers
in March, with the Dow Jones Industrial Average declined by
7.8%, 10.0% and 12.9%, respectively, on March 9, 12 and
16. Despite the quick bound-back in recent months activated
by the CARES Act (a $2.2 trillion economic stimulus bill
passed in March 18, 2020), the market volatility brings a
lot of uncertainty down the road given that the COVID-19
pandemic is becoming severer frustrating the reopening efforts.
Therefore, it is more important than ever to have a prediction
model that can indicate the future stock price directions with a
reasonably high confidence to avoid losses and to make profits.

A lot of stock plunges can be inferred from (or are triggered
by) news, such as the layoffs by Uber, Lyft and Airbnb, and
the reported security flaws of Zoom. These news are timely
posted on the various credible Twitter news accounts, and
following them in time is important to project price directions.
However, stock analysts usually adjust their judgment based on
the recent news in a subjective manner, and different analysts
can often provide conflicting recommendations. For example,
COVID-19 pandemic leads to a skyrocketing of Zoom’s user
base and most analysts will predict Zoom’s stock price to be
increasing in the long run as it has been since the beginning
of 2020; but the security issues exposed by the skyrocketing
of Zoom users caused stock price plunge once, and different
analysts may have different interpretation of the duration and
significance of the security scandal’s impact.978-1-7281-6251-5/20/$31.00 ©2020 IEEE

(a) A relevant Tweet signaling negative impact on Apple’s stock

(c) An irrelevant Tweet using Apple as an example for trademarks

(b) An irrelevant Tweet regarding American singer-songwriter Fiona Apple

Fig. 1. Examples of News Tweet Relevance about “Apple”

We propose to adopt an objective data-driven approach to
integrate news information into the stock price prediction.
This is made possible by the recent advancement in deep
learning, which has revolutionized how computer vision (CV)
and natural language processing (NLP) tasks are carried out.
Deep learning models extract informative semantic features
from raw data (e.g., words) for effective prediction. Large pre-
trained models such as BERT [9] and GPT-3 [6] has demon-
strated performance on par with (and sometimes surpassing)
human-level accuracy on NLP tasks, and they allow for
transfer learning that only requires a few thousand of problem-
specific annotated data to achieve state-of-the-art performance
for a particular problem domain.

In this paper, we build a deep learning pipeline to continu-
ously extract informative market signals from Twitter news,
which are integrated into an online stock price prediction
model to guide investment decisions. We consider 2 market
signals: (i) historical price of a stock, (ii) a stream of news
from Twitter about the stock. Specifically, our workflow con-
tains a pipeline of four modules:

• Twitter News Crawler. This module continuously crawls
those news tweets that contain the stock names from
high-quality Twitter accounts, including credible News
accounts and those of top investing experts actively
offering market or economic commentary. Besides high
tweet quality, those accounts have a large number of
followers and are themselves impacting the stock market.

• Relevance-Based Tweet Extractor. Despite our quality
control by only crawling news from credible Twitter
accounts, we can still obtain tweets irrelevant to the stock

Fig. 2. An Example Tweet Where Subject Matters for the Sentiment

names. To illustrate, consider the 3 examples shown in
Figure 1. Figure 1(a) is about a potential drop in Sales
of Apple and is relevant to Apple’s stock. Figure 1(b)
is about a singer whose name is “Fiona Apple”, and the
tweet is irrelevant due to name ambiguity of “Apple”. The
“Apple” word in Figure 1(c) is referring to Apple Inc. but
the tweet is still irrelevant since it is talking about trade-
marks and not about the market performance/expectation
on Apple. Therefore, our crawled tweets will first go
through a relevance judging module, and those that are
judged as irrelevant are filtered in time.

• Sentiment-Based Tweet Feature Extractor. Sentiment
analysis is the interpretation and classification of emo-
tions (positive, negative and neutral) within text data. In
our context, we care about if a tweet holds a positive
or negative view about a stock, which will impact its
price positively or negatively, respectively. We extract
sentiment-based features from only those tweets that pass
our relevance filter, by building a sentiment classification
model on the tweet text. Since sentiments are intuitive for
human to annotate, a deep-learning based classifier can
be easily trained by transfer learning, and the last-layer
semantics features can be used as sentiment features to
be used by our next module for price prediction.

• Price Prediction Network. Once our sentiment feature
extractor is trained, it can be used to extract stock-price
related semantics features from each news tweet. These
semantics features, along with historical prices, can be
fed into a sequence-to-price prediction model to predict
the future prices of a stock.

A recent breakthrough in NLP is the invention of Trans-
former [24], which relies entirely on self-attention to compute
text representations without using a recurrent network struc-
ture, enabling better parallelization and a higher learning qual-
ity. Pioneered by Google’s BERT [9], a series of Transformer-
based language models have been proposed [7], [8], [16],
[17], [21], [26], which allows users to fine-tune a pre-trained
NLP model for their target NLP applications. We build our
relevance-based and sentiment-based tweet classifiers on top
of BERT, gluing together semantic features of an entire tweet
along with those of the stock subject for effective learning. The
need of integrating stock-subject specific features is illustrated
by the news tweet shown in Figure 2, where we can see that
if the subject is Tesla or Microsoft, the sentiment is positive;
while if the subject is Facebook, the sentiment is negative.

The relevance and sentiment of a news tweet is intuitive
to human, making annotation a viable task. Using sentiment
annotations as supervision, we can train our BERT-based tweet
sentiment classifier end-to-end to build a feature extractor that
returns the last-layer sentiment features given a tweet text as

the input. These features are the input to our final LSTM [14]-
based regression model that predicts future stock prices from
historical price data along with the extracted sentiment news
features. Since this LSTM model is also trained end-to-end,
our solution is fully data-driven and avoids the subjectivity of
stock analysts when they digest news for price prediction.

We call our workflow pipeline as BELT since it is a com-
bination of BERT and LSTM models. The main contributions
of this work are summarized as follows:

• Data Curation. We contributed a set of 5,237 carefully
annotated tweet news based on their relevance and sen-
timents, which can be used to fine-tune any pre-trained
lanugage model for classification.

• Quality Control. Pre-trained transformer-based language
models usually do not work well with average-quality
tweets which contain colloquial language and slangs that
deviate from formal text. Therefore, we only collect
tweets from high-quality accounts. We also use a BERT-
based relevance classifier to filter irrelevant tweets.

• Objective Integration of News Signals. While analysts
usually take news into consideration in a subject manner,
we advocate a data-driven approach to learn how news
impacts stock prices through end-to-end training. Via
human annotated tweet sentiments, we train a BERT-
based sentiment classifier whose last-layer features serve
as semantic signals to our prediction model, which is also
trained end-to-end using real stock prices to learn how
these signals weigh in determining the future price trend.

• Feature integration by Autoregressive LSTM. We
adopt an autoregressive LSTM network to predict future
prices of a stock from its prices in previous time steps,
expanded with covariates of news sentiment features.
Due to the autoregressive nature of our model, the error
adjustment in each time step backpropagates to tune the
LSTM parameters so that the whole price sequence is
fully utilized in supervised price regression learning.

We remark that BELT is general and can be used to predict
any price-based investment besides stocks, such as futures
and options, where news are also important signals for buys
and sells. BELT also works with other curated news sources
other than quality-controlled tweets; for example, one may use
news from Factiva (https://professional.dowjones.com/factiva/)
or other paid service to further improve the data quality.

The rest of this paper is organized as follows. Section II
briefly reviews the related work on stock price prediction.
Section III presents the preliminaries including a brief review
of BERT, and our problem definition and dataset description.
Section IV then describes our BELT workflow including the
design of its four modules. Section V reports our experimental
results on real stock data that verify the effectiveness of BELT.
Finally, we conclude this paper in Section VI.

II. RELATED WORK

Autoregressive LSTM networks have been used for in-
ventory prediction by Amazon in their DeepAR model [11]
where instead of directly predicting a predicted value yt,

LSTM output predicts the parameters of a negative bino-
mial distribution from which yt is sampled as a positive
(inventory) count. DeepAR also proposes to let LSTM output
predict the parameters of a Gaussian distribution from which
to sample a continuous value for yt (e.g., a stock price),
and the Gaussian distribution can account for the market
microstructure noises. However, the additional distribution
layer before yt slows down training and prediction, and when
generating future price sequences for prediction, DeepAR has
to sample a price at each time step leading to nondeterministic
outputs so that many sampling passes are needed to estimate
a stable prediction. Recently, we proposed another autore-
gressive LSTM model [13] for stock price prediction that
takes technical indicators as covariates to capture longer-term
stock features, which demonstrated a superior performance
compared with other competing predictive models. Unlike
DeepAR, our model does not use an additional distribution
layer before yt. To cope with market microstructure noises,
we cleanse and sparsify the high-frequency trade data using
well-established finance practices before training our LSTM
network, which we also follow in the current work. DeepAR
has also been improved by replacing the distribution that
generates yt with spline quantile functions and trained with
Continuous Ranked Probability Score (CRPS) as the loss [12];
and by fusing state space models (e.g., ARIMA) to enforce
temporal smoothness [22].

Besides using covariates extracted from historical prices as
we did in [13], a number of works have explored the extraction
of other features when other data sources are available, such as
the technical indicators of other stocks in the same sector [5],
temporal stock correlations [19], correlation between social
media and financial data [23], tweet mood scores [18], limit
order books [28], etc. However, all these works model the pre-
diction as a binary classification problem rather than a direct
price regression, which has been found to be suboptimal in our
work of [13]. Among other works, [15] extracts image features
from candlestick stock charts using convnets to enhance the
temporal features learned by LSTM, while [4] decomposes
the stock price time series by wavelet transforms to eliminate
noise, followed by extracting deep high-level features using
stacked autoencoders, and the features are then fed into LSTM
for price forecast. We remark that our model is compatible
with all above sources, as they can be fed into our model as
covariates (just like our extracted sentiment features).

In our domain of tweet-based stock prediction, Stock-
Net [25] is the state of the art which adopts an encoder-
decoder architecture to digest corpus embeddings and histori-
cal prices, uses attention weights to account for tweet quality,
uses neural variational inference to address the intractable
posterior inference, and uses attentive temporal auxiliary to
integrate temporal loss. GRU is used in replace of LSTM in
the component design. We have compared our model with
StockNet and found that our model is superior since we
directly adopt a relevance-based tweet filter to eliminate low-
quality tweets, and our pipeline design is able to utilize the
more powerful Transformer model to extract tweet features.

768
768

Fig. 3. BERT Architecture

III. PRELIMINARIES

Since BERT is a basic building block in our BELT pipeline,
this section first provides a minimally necessary introduction
to BERT, before we formally define our problem and describe
the types of data that BELT takes as its input.

A. A Brief Review of BERT

BERT [9] has two pre-trained models, BERT-base and
BERT-large. BERT-base was explicitly created to compare
with OpenAI GPT [20] and thus has exactly the same param-
eters as GPT: 12 layers of stacked transformer-based encoders
and an embedding-vector length of 768 (see Figure 3); while
BERT-large is even bigger with 24 layers of encoders and an
embedding length of 1024. BERT-large beats BERT-base in all
NLP tasks and achieves the state-of-the-art performance, but
without loss of generality, this paper assumes that BERT-base
is used throughout due to its better efficiency.

Each word in a sentence starts with its embedding repre-
sentation from the embedding layer (which is pre-trained). As
Figure 3 shows, every layer does some multi-headed atten-
tion computation on the word representation of the previous
layer to create a new intermediate representation. All these
intermediate representations are of the same size (i.e., 768).

The final embedding that corresponds to [CLS] (i.e., the
first blue vector in Figure 3) is called a “pooled output”
which encodes the semantic of the entire input sentence,
since it is connected to the loss of a classification task called
Next Sentence Prediction (NSP) during pre-training. NSP
receives pairs of sentences as input and learns to predict
if the second sentence in the pair is right next to the first
sentence in the original document. While BERT admits two
sentences as input, in an actual classification task such as in
our relevance and sentiment classification the input only uses
the first sentence.

In Figure 3, the output also contains one embedding vector
(in light blue color) for each input word, which represents the
semantic features of that word. This word embedding captures
its context in the sentence since the transforms utilize the self-
attention mechanism. In fact, each word embedding vector
is connected to the loss of a task called Masked Language

h0 fW h1

x1

y1

W

fW h2

x2

y2

fW h3

x3

y3

hT

yT

. . .

Fig. 4. A Many-to-Many Recurrent Neural Network

Modeling (MLM) which masks the current word with a token
[MASK] and attempts to predict the masked word based on
the context provided by the other, non-masked, words in the
sentence. The sequence of all these output word embeddings
are collectively called as the “sequence output” of BERT.

When pre-training the BERT model, MLM and NSP are
trained together, with the goal of minimizing the combined
loss function of the two strategies.

We remark that BERT is a perfect tool to extract the
semantic features of a news tweet (i.e., pooled output) as well
as the semantic features of the stock subject mentioned in
the tweet (i.e., sequence output elements), both of which are
important in determining the final classification label as we
have illustrated using Figure 2.

B. Our Problem Formulation

This paper studies the problem of predicting the future
prices of a stock based on its historical prices and news tweets
about this stock. We adopt a many-to-many recurrent neural
network (RNN) architecture for stock price prediction.

Many-to-Many RNN. Figure 4 shows an RNN which takes
an input sequence (x1,x2, . . . ,xT) and predicts an output
sequence (y1, y2, . . . , yT). Here, each xt is a vector of input
features at time step t,, and each yt is the predicted output
at time t. For regression, yt is a scalar (e.g., stock price in
the next time step); let rt be the actual next stock price,
then we use a loss function `t = (yt − rt)

2 to measure the
error at time t. The overall loss of the training/validation data
sequence (x1,x2, . . . ,xT) and (y1, y2, . . . , yT) is computed as
the average loss L = 1

T

∑
t `t, and the loss of a set of training

mini-batch or a validation set is computed as the average value
of L in the set.

In Figure 4, a recurrence formula ht = fW (ht−1,xt) is
applied at every time t, where ht is the hidden state at time
t which captures all the information up to time t as it sees
(x1,x2, . . . ,xt). Bidirectional RNN is common in NLP but we
do not consider it here since price prediction is one directional.
In a vanilla RNN, we have fW = tanh(Whhht−1 +Wxhxt),
and yt is read out from the hidden state ht as yt = Whyht.
Note that W = (Whh,Wxh), since ht = fW = tanh(Wvt)
where vt = (ht, xt)

T . In reality, LSTM [14] is used in replace
of vanilla RNN to mitigate the vanish gradient problem.

h1 h2 h3

y1 y2 y3

hT

yT

x1 x2 x3 xT

...

x1 x2 x3 xT

y1 y2 y3 yT

h1 h2 h3 hT...(1) (1) (1) (1)

h1 h2 h3 hT...(2) (2) (2) (2)

...

...

...

...

(a) Simplified RNN Diagram (b) Stacked RNN

Fig. 5. Simplified RNN Diagram

We call the RNN in Figure 4 as a many-to-many RNN, since
it emits an output yt at every time t. Since all the recurrence
steps share the same recurrence parameter W and the same
read-out parameter Why , the loss `t at every time t will adjust
the values of W and Why during back-propagation. Such a
strong supervision may not be possible in some applications
like sentiment classification of a sentence, where only one
output (positive/negative) is available after reading the entire
sequence of words in a sentence. In such a case, a many-to-one
RNN is used where the output is only yT and the loss function
is defined only over yT . However, since we have the entire
price sequence, we should adopt a many-to-many architecture
to fully utilize the available supervision for training. In fact,
many existing work on stock price prediction still uses a many-
to-one model rather than an autoregressive one, as we reviewed
in Section II, which is a weakness though easy to fix.

For ease of presentation, we will simplify the RNN in
Figure 4 into the RNN diagram in Figure 5(a), where h0 is
omitted since it is usually initialized as a zero state.

If we treat the output (y1,y2, . . . ,yT) as intermediate
features denoted as (o1,o2, . . . ,oT), we can stack another
layer of RNN on top that takes (o1,o2, . . . ,oT) as the input
sequence, which gives the stacked RNN in Figure 5(b) with 2
hidden layers that can be depicted by:

h
(1)
t = fW (1)(h

(1)
t−1,xt), ot = Wh(1)oh

(1)
t ,

h
(2)
t = fW (2)(h

(2)
t−1,ot), yt = Wh(2)yh

(2)
t .

More LSTM layers can be stacked on top to extract higher-
level features before we use them to generate the output.

Time-Step Choice & Median-Share Price. High-frequency
price data are now readily available, such as the Trade and
Quote (TAQ) database available at the Wharton Research Data
Services (WRDS) website that provides stock data including
price, number of shares, and time of each transaction to the
nearest second. On each weekday, the market opens at 9:30
AM ET and ends at 4:00 PM ET, and the market data in every
second is recorded.

However, market microstructure noises are a major hurdle
towards the price analysis when the sampling frequency is
high since the realized volatility will not be stable. As a well-
established conclusion, [27] shows that a sampling frequency
of 5 minutes or longer is a must for stable analysis.

y

x1
c1

y1 y2 y3 yT

h1 h2 h3 hT...(1) (1) (1) (1)

h1 h2 h3 hT...(2) (2) (2) (2)

...

(a) RNN Model in Prior Work (b) Our RNN Model

x1 x2 x3 xT

yT

h1 h2 h3 hT...(1) (1) (1) (1)

h1 h2 h3 hT...(2) (2) (2) (2)

...

1{xT+1 – xT > 0}

Lcross-entropy

xT+1

L

x2
c2

x3
c3

xT
cT

x4

L

x3

L

x2

L ...
...
LMSE

Fig. 6. Our autoregressive RNN Model

Instead of subsampling, we adopt the approach by [10]
which better captures average price information in each time
block. Specifically, we use the median share-price as a repre-
sentative price for each time block, which is the median price
per share treating each share traded as a separate observation.

An Autoregressive LSTM Architecture. Without loss of
generality, this paper studies the problem of predicting the
median share-price of a future day from the information of
a sequence of T previous days. In other words, we use one
day as the basic unit of a time block. This is because we can
have sufficient news tweets on each day to extract sentiment
features, as we only collect tweets from the most credible
accounts for quality control. Our model can be easily used for
a smaller time block size if the news sources are richer (e.g.,
with access to Factiva), or we allow some time steps to have
no news which can be done by setting news feature values to
be fed as LSTM input to 0.

In fact, most investors will not consider buying and selling
their stocks on the same day or too frequently due to trans-
action fees, let alone some markets like that of China that do
not allow T+0. Our model provides predicted stock prices for
future days so that investors can get an intuitive feeling of
how likely and how much the stock price will rise or drop to
guide their investment decisions. Note that predicting median
share-price means that the price is at least the predicted value
for approximately 50% of the time of the day of prediction.

Figure 6 shows our autoregressive many-to-many LSTM
network for price prediction. Specifically, yt is the predicted
median share-price on day (t + 1), while xt+1 is the actual
median share-price on that day. Note that having a representa-
tive price for each time step is the key to our price regression
model, while prior works only model the price information
in each time step as a feature vector (e.g., OHLCV) and only
predict price directions as a classification problem (rather than
regression), providing less supervision than allowed by the
actual price since there is no penalty as long as the price
direction is correct and the loss makes no effort to further close
the gap between yt and xt+1. At each step t, the input contains
the median share-price xt along with a vector of covariates ct
that contains the sentiment features of news tweets on the
considered stock posted in day t so far.

TABLE I
ILLUSTRATION OF NEWS SOURCES ON TWITTER

Top-10 News Accounts Top-10 Investor Accounts
CNN Breaking News — @cnnbrk (55.4M followers) Downtown Josh Brown@ReformedBroker

The New York Times — @nytimes (43.6M followers) Joe Weisenthal@TheStalwart

CNN — @cnn (42.1M followers) Vitalik Buterin@VitalikButerin

BBC Breaking News — @bbcbreaking (40M followers) Charlie Lee@satoshilite

BBC World — @bbcworld (25.3M followers) Barry Ritholtz@ritholtz

The Economist — @theeconomist (23.8M followers) Wu-Tang Financial@Wu_Tang_Finance

Reuters Top News — @reuters (20.5M followers) StockCats@StockCats

The Wall Street Journal — @wsj (16.7M followers) Rudy Havenstein@RudyHavenstein

Time — @time (16.1M followers) Liz Ann Sonders@LizAnnSonders

ABC News — @abc (14.4M followers) Ivan the K@IvanTheK

IV. THE BELT PIPELINE

BELT is consisted of a sequential pipeline of four mod-
ules: (1) a Twitter news crawler that continuously collects
news tweets, (2) a relevance-based tweet filter that removes
irrelevant tweets, (3) a tweet feature extractor that extracts
sentiment features from the remaining tweets that are relevant,
and (4) our autoregressive LSTM network for price prediction
that integrates the tweet sentiment features as covariates.

We remark that modules 2 and 3 are both BERT-based
classifiers following the same network architecture but with
different labels: module 2 emits a label “relevant” or “irrele-
vant” for a tweet, while module 3 emits “positive”, “neutral” or
“negative”. Only the last-layer sentiment features of module 3
are useful and are fed as covariates into module 4.

Also, both modules 1 and 2 conduct quality control over
tweets to ensure that only high-quality tweets pass them and
make it to module 3 for feature extraction. This is impor-
tant for two reasons: (i) most tweets are informal text with
colloquial language and slangs, which is quite different from
what BERT’s pre-trained tokenizer can effectively recognize;
(ii) since anyone can comment on stocks in Twitter, an average
tweet containing stock keywords is likely not credible and only
brings noise to the prediction in module 4.

We next introduce our four modules one by one in the
following four subsections.

A. Twitter News Crawler

This module continuously collects news tweets from cred-
ible Twitter accounts. There is a tradeoff when selecting the
number of sources on Twitter: the more sources we select,
the noisier the tweet quality is which compromises prediction
quality, but meanwhile the more abundant news tweets we
will obtain which allows for for frequent collection and thus
a finer time-block unit. Our strategy in this paper is to only
collect tweets from the most credible sources, which not only
guarantees source quality but also tends to collect tweets
with more formal language that better fits BERT’s pre-trained
tokenizer that we have to use in order to use BERT-base.

Specifically, we collected those tweets containing stock
name keywords from the 30 must-follow Twitter accounts for
news in 2019 listed in [3]. Since the number of news tweets
from them could be very limited for stocks that are not very
popular, we also enrich the sources with the 50 most important

people for investors to follow listed in [2]. Table I shows the
top-10 from both sources as an illustration.

In our BELT pipeline, an online stream of news tweets can
be easily collected from the timelines of the above Twitter
accounts using Python’s Tweepy library that wraps Twitter
Official API. However, for training purpose using historical
prices of stocks, we also need to collect their old news tweets.
This is made possible by Python’s GetOldTweets3 library
that “hacks” Twitter Search to bypass Twitter API’s time
constraints (i.e., you cannot get tweets older than a week).

An alternative solution is to use Twitter’s streaming API
to get those stocks that contain stock names as keywords.
We actually adopted this solution initially but almost all
our randomly sampled tweets for scrutiny are irrelevant and
of a low quality. Features extracted from them cannot help
modules 2 and 3 learn anything, and thus we abandoned this
solution. We remark that quality control on tweets is a key to
allow effective identification of correct market signals.

In order to train our two text classifiers in modules 2 and 3,
we curated a training dataset of 5,237 tweets collected during
the duration of January 1st, 2020 to April 30th, 2020 for
the 100 most popular stocks listed in [1]. To ensure quality,
5 Computer Science PhD students from the University of
Alabama at Birmingham labeled these tweets ensuring that
each tweet is labeled by 2 different students.

Our final curated news tweet dataset has 4,380 relevant
tweets out of the totally 5,237 thanks to our quality control
over the news sources. Among the 4,380 relevant tweets,
only 2,830 have consistent sentiment labels by the two stu-
dents who labeled them: 955 are positive, 982 are neutral,
and 893 are negative. All 5,237 tweets are used to fine-
tune our relevance classifier in module 2, while only the
2,830 tweets with consistent sentiment labels are used to
fine-tune our sentiment classifier in module 3 to ensure the
quality of training data. Our curated dataset is released on
https://github.com/sdsz20142087/stock sentiment data.

B. Relevance-Based Tweet Extractor

Each crawled tweet needs to pass through an additional step
of quality control before being passed for feature extraction,
and this is achieved by our relevance classifier. Only those
that are classified as relevant will be used. Both our relevance
classifier and the sentiment classifier are built by fine-tuning

pooled
output sequence output

Tesla and Microsoft …

Keywords of major stocks: MSFT, FB, TSLA, …

TSLA: Tesla, TSLA
MSFT: Microsoft, MSFT

… …

Text: Tesla and Microsoft topped Wall Street earning …
Bitmap: < >0 0 1 0 0 0 0 …

0 0 1 0

tf.concat

dense

< s-1 , s0 , s1 >
softmax

< p-1 , p0 , p1 >
one-hot

Ground truth: rise, same, drop

< 1 , 0 , 0 >cross-entropy loss

dense

dense
� Crawling

� Annotation

�Masking� Embedding

� Aggregation

� Prediction

Fig. 7. The BERT-based Classifier Architecture

BERT-base over our curated news tweet dataset, the network
architecture of which is shown in Figure 7. The difference
is that our relevance classifier is a binary classifier judging
whether a news tweet is relevant to the stock keyword that is
used to crawl that tweet or not, while our sentiment classifier
classifies each tweet into one of three labels: positive, neutral
or negative, based on their sentiment on the mentioned stock.

As shown in Figure 7, the training workflow can be sum-
marized as 6 steps, which we introduce next.

In the first step, we crawl tweets using stock keywords. For
each stock, we use both its stock name and its stock code. For
example, ‘TSLA’ and ‘Tesla’ are both used to crawl Tesla-
related news tweets, while ‘MSFT’ and ’Microsoft’ are both
used to crawl Microsoft-related news tweets. In the second
step, we annotate these tweets. Note that in Figure 7, each
annotated tweet has its text, label, and the search term that is
used to crawl it. We denote a tweet by t, denote its text by
text(t), its label by label(t), and its search term by term(t).

In the third step, we prepare out model input. Specifically,
we first remove words that are not part of the sentence. For
example, for the tweet shown in Figure 7, we remove the URL
and “$TSLA $MSFT $FB” at the end. We also remove other
non-word terms such as hashtags. Then, each cleansed tweet t
will be tokenized into a word sequence text(t) using BERT’s
tokenizer. We also prepare a masking bitmap for t by scanning
through each word w in text(t): if w matches the search term
term(t) or its equivalent form (e.g., ‘TSLA’ and ‘Tesla’), the
corresponding bit is set to 1; otherwise, the bit is set to 0. We
denote the bitmap of t by bitmap(t).

Now that we have both text(t) and bitmap(t) for each
tweet t in the training dataset, The fourth step takes text(t)
as input to extract the sentence embedding (i.e., pooled output)
and the word embedding sequence (i.e., sequence output).

These outputs are then integrated with the other model input
bitmap(t) in the fifth step to obtain the semantic features for
classification. Specifically, we align the embedding of each
word with the word’s bit in bitmap(t), and compute the
average as follows:

subject(t) =
∑
i

{
bitmap(t)[i] · sequence output(t)[i]

}
,

where subject(t) essentially computes the average of all
context-aware embeddings of words that match term(t) in
text(t), and thus well represents the subject stock in the
tweet. Meanwhile, we also have pooled output(t) which well
represents the entire tweet. These two embeddings are shown
as blue rectangles in Figure 7.

So far, we yet have no fine-tuning using our training labels.
To incorporate the impact of training labels, we transform the
two BERT feature vectors pooled output(t) and subject(t)
by a dense layer to obtain two relevance-specific (or sentiment-
specific) semantic features. These two transformed feature
vectors are shown as green rectangles in Figure 7. Finally,
a dense layer takes a concatenation of both the transformed
feature vectors, and converts them into a score vector whose
length equals the number of classes, which can be used in the
sixth step to choose the highest-scored class as the label.

For training purpose, both vectors are transformed into a
probability vector using softmax, and then connected to cross-
entropy loss to penalize its difference from the ground-truth
one-hot label encoding.

Note that we actually have other options before the fi-
nal dense layer besides using both the transformed feature
vectors. For example, we can use the transformed features
of only pooled output(t) or subject(t) alone, but our tests
show that using both delivers the highest performance. In

fact, using subject(t) alone often reduces the prediction
accuracy by around 10%. Another option is to directly wire
pooled output(t) and/or subject(t) to the final dense layer
without another dense layer of feature transformation, but our
test show that this method reduces the prediction accuracy.

C. Sentiment-Based Tweet Feature Extractor

Unlike our relevance classifier which is trained to emit
relevance-labels for filtering purpose, the sentiment classifier
is just using our annotated labels to fine-tune the model to
extract the semantic features. In our final deployment, we only
need the concatenated vector of the two transformed features,
i.e. the green vectors shown in Figure 7, which serve as the
extracted tweet features to be input as covariates to module 4.

We remark that here, the two dense layers that transforms
pooled output(t) and subject(t), respectively, are important
as otherwise, we will be using pooled output(t) or subject(t)
directly (i.e., those blue embeddings shown in Figure 7)
which can be derived from the pretrained BERT-base without
any fine-tuning using our curated dataset. We find the latter
solution gives lower predication accuracy which is no wonder
since the features are not transformed to expose sentiments.

Once the sentiment classifier is trained, it serves as a
feature extractor from those relevant tweets that pass through
module 2 during our deployment of the BELT pipeline.

D. Feature integration by Autoregressive LSTM

In fact, modules 2 and 3 are both general to any stock, and
when we train them, we actually replace the stock subject with
[MASK] since we just want to learn if the context indicates
if the mentioned stock is positive, neutral or negative, and we
do not care which stock it is. In other words, we are learning
a general language model that is not stock-specific.

However, our price prediction model should be stock-
specific, since the property of different stocks can be very
different. In other words, the price data should be trained
separately on each stock for its prediction, even though the
fine-tuned modules 2 and 3 are shared to extract news features.

As we have discussed in Section III-B, our price prediction
is achieved by a many-to-many autoregressive LSTM network
where the input to each LSTM unit includes the price on day t,
i.e. xt, along with a covariate feature vector ct for day t. Here,
ct is given by the average vector of the transformed sentiment
feature vectors extracted from all relevant tweets on day t.

We remark that while existing works on stock prediction
often predicts price directions rather than the actual price,
our LSTM network architecture is superior as explained in
Section II. Note that after predicting the price x̂T , we can still
get the predicted price direction sign(x̂T−xT−1) and compare
it with the actual direction sign(xT −xT−1). We also remark
that we can easily expand ct to include additional features
from other data sources to further improve our performance.

V. EXPERIMENTS

This section reports our experiments, which were conducted
using a machine equipped with NVIDIA Tesla P100 GPUs.

Every experiment is repeated for 3 times and all reported re-
sults are averaged over the 3 runs to cancel out the randomness
caused by the stochastic nature of parameter initialization and
mini-batch selection.

Pre-training Modules 2 and 3. We trained modules 2
and 3 over our curated news tweet dataset collected for
the duration of January 1st, 2020 to April 30th, 2020, by
extensively testing different model parameters, especially the
number of hidden units in each feature vector transformed
from pooled output(t) or subject(t).

During the training of both classifiers, we use a batch size
of 32, a learning rate of 2× 10−5, and run for 4 epochs with
a warmup proportion of 10%. The maximum sequence length
of BERT is set as 128 (i.e., long tweets are truncated while
zero-padding is used for short tweets).

For module 2, the relevance classifier, we use all our 5,237
tweets to find the best setting. Specifically, 30% of the tweets
(i.e., 1,572 tweets) are used for testing, and among the remain-
ing 3,665 tweets, we have 3,073 relevant (i.e., positive) tweets
and only 592 irrelevant (i.e., negative) tweets. To address the
class imbalance problem while utilizing all our annotation
efforts, we upsample a pool of 3,073 negative tweets from
the 592 irrelevant tweets to allow duplication. Training is then
conducted with 1/3 of the tweets used as a validation set to
avoid overfitting. We find that when the transformed feature
vectors from pooled output(t) and subject(t) have 256 units
each, the test accuracy is the highest, 94.7%.

The sentiment classifier in module 3 is trained similarly
and we find that the best test accuracy of 84.5% is achieved
when the transformed feature vectors from pooled output(t)
and subject(t) have 32 units each. The smaller number of
feature vector units and lower accuracy than our relevance
classifier is because we dropped part of the tweets with
inconsistent annotations to ensure quality but the training set
size is reduced, and our sentiment classification has 3 classes
while our relevance classifier only considers 2 classes. We
expect the accuracy to improve further if more annotated
tweets are available or richer news sources are used such
as Factiva. Note that since each transformed feature vector
from pooled output(t) or subject(t) has 32 units, we obtain
a concatenated vector of 64 sentiment features for each news
tweet which is fed into our module 4 for price prediction.

Models for Stock-Specific Prediction in Module 4. Unlike
modules 2 and 3 that are general, we train a price prediction
model for each stock separately since different stocks expose
different properties which are reflected in their stock price
curve. Albeit not the topic of this paper, there might be
correlations between stocks in the same sector that can be
further utilized (e.g., using graph convolutions over a stock
correlation network) to improve accuracy.

Besides our autoregressive LSTM model for next-day price
regression, we also consider the problem of next-day price
direction prediction (i.e., classification) that are popularly
studied by existing works. For this purpose, we compare with
the baseline approach that transforms output features by a

dense layer into a score for the positive (i.e., price-rising)
class, which is then converted to the class probability using
Sigmoid and given to a binary cross-entropy loss function to
close the gap with the actual price direction in the next day.
This baseline utilizes the price direction sign(xT+1−xT) as a
classification label which is a weaker kind of supervision than
regression using the actual magnitude of xT+1 to close the gap
between it and its prediction x̂T+1. We denote our model by
REG, and the baseline model by CLS. Note that REG can be
used to generate price direction prediction as sign(x̂T+1−xT),
and we expect the direction prediction to be more accurate due
to the strong supervision in REG compared wth CLS.

For both REG and CLS, we further consider 2 versions,
one where LSTM only takes the median share-price as input
which serves as a baseline, and the other where LSTM takes
both the median share-price and a covariate of sentiment
features extracted from news tweets on that day. This gives
rise to 4 algorithms versions to consider for price direction
prediction: REG-Price, REG-Sent, CLS-Price, CLS-Sent. Here,
for example, REG-Sent denotes the algorithm REG that utilizes
both median share-prices and news sentiment features. For
next-day price regression, only two models, REG-Price and
REG-Sent, are applicable.

Data for Stock Prediction. Our stock data are purchased
from kibot.com containing the price and trade volume of every
stock in every minute till the current moment. We consider
the duration of January 1st, 2019 to May 31st, 2020 for
training and testing our model. To avoid the impact by different
quarters of a year, for each quarter in 2019, the first 2 months
are included in our training data, and the third month is
included for testing. The same applies to 2020 except that
in Q2, April is used for training and May is used for testing.
We collected all the stock-related tweets from the credible
sources that we introduced in Section IV-A. We choose the
recent duration because there are abundant news tweets during
this duration, and thus our experiments can properly reflect the
impact of news tweets. This is in contrast to, say, 2008 where
we found that the number of news tweets is very limited.

LSTM Model Configuration. We tested all four models,
REG-Price, REG-Sent, CLS-Price, and CLS-Sent, using vari-
ous configurations, and found that the following configuration
consistently delivers good performance over all our tested
stocks, and is thus adopted in the experiments reported here-
after. Specifically, we use a stacked LSTM architecture with 2
LSTM layers. Right after the first LSTM layer, we add batch
normalization plus ReLU before connecting with the second
LSTM layer. Batch normalization is used since we find it to
significantly speed up convergence. The hidden unit size for
the first LSTM layer is 64, and that for the second LSTM layer
is 16. The test error continues to decrease as we increase the
LSTM sequence length all the way up to 15 (or, 3 weeks), and
thus T = 15 is used as the sequence length for prediction.

We set the learning rate as 0.01 and runs for 150 epochs.
This setting is sufficient for all our tested models to converge.

One important preprocessing is to normalize the price data

TABLE II
ROOT MEAN SQUARE ERROR

Stocks REG-Price REG-Sent
BA 0.051 0.041
GM 0.054 0.026
GE 0.133 0.021
AAPL 0.110 0.027
XOM 0.085 0.021
MCD 0.066 0.028
DOW 0.049 0.037

Fig. 8. Price Prediction for Apple, Inc.

by dividing with the maximum stock price in the duration.
This is because, for example, the price of AAPL (or Apple) is
over $300, but our extracted sentiment features from BERT all
have values either between 0 and 1, or not much larger than
1. So, for example, if we concatenate the median share-price
with the 64 sentiment features extracted by module 3 to create
the input vector to an LSTM unit, the input features are not
of the same scale which impacts training effectiveness.

Experiments on Next-Day Price Prediction. We tested the
price prediction performance of our regression models REG-
Price and REG-Sent over 7 popular stocks plus DOW (Dow
Jones Industrial Average), and the results are shown in Table II
where stocks are shown with their codes. In Table II, the
errors are reported as the RMSE of price prediction on our
test data, and recall that our price values have been normalized
between 0 and 1. We can see that REG-Sent beats REG-Price
in all cases thanks to the integration of news information for
prediction. In fact, in most cases the RMSE of REG-Sent is
many times smaller than REG-Price.

To visualize how both models perform, we run them to
predict the next-day price for the last 40 days in our duration
and plot their predicted prices in Figure 8. We can see that
relies on price alone, REG-Price tends to predict the next-
day prices higher than the actual prices. This is because the
overall price trend is upward and the long sequence of upward
prices makes REG-Price over confident in prediction. In fact,
there are two clear price drops on day 11 and day 28 meaning
that there are negative factors limiting the price growth, and
these signals are captured by REG-Sent via the stream of
news tweets. REG-Sent actually adjusted from overestimating
the price towards underestimating the price (possibly because

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru
e
P
o
s
it
iv
e
R
a
te

Receiver Operating Characteristic Curves

CLS-Sent (AUC = 0.55)

CLS-Price (AUC = 0.40)

SOTA (AUC = 0.52)

REG-Sent

REG-Price

Fig. 9. ROC Curves of Different Models

the top of the price curve is going to be reached due to
negative signals which can be captured by news), but error
is consistently smaller than REG-Price in all days.
Experiments on Next-Day Price Direction Prediction. We
remark that even when using REG models for the binary
classification problem of the next-day price direction pre-
diction, it is more accurate than the existing classification
scheme as we emulated using our baseline CLS models.
Figure 9 shows the ROC curves of CLS-Sent, CLS-Price,
and SOTA which is StockNet [25]’s fully-equipped and best
version called HedgeFundAnalyst. Since all of them obtains
positive class probability using sigmoid, the ROC curves are
obtained by varying the probability threshold to be positive
(i.e., price-rise). CLS-Sent (AUC = 0.55) is better than SOTA
since Transformers are more powerful in extracting semantic
features, and StockNet’s attention weights are not as effective
as our relevance filter in reducing noise from irrelevant tweets.
CLS-Price (AUC = 0.40) does not utilize news sentiments an
thus perform poorly. REG-Sent and REG-Price are points since
we compare sign(x̂T+1−xT) with sign(xT+1−xT) which is
deterministic. Both points are above the ROC curves showing
that regression models are more effective in price movement
prediction, though REG-Sent is much better as it considers
tweets sentiment.

VI. CONCLUSION

This paper proposed an objective way of integrating news
signals streamed from Twitter into an autoregressive LSTM
model that predicts the stock price for end-to-end training.
The end-product is a predictive pipeline called BELT which
is effectiveness of BELT in stock price prediction.
Acknowledgements. This work is partially supported by NSF
DGE-1723250.

REFERENCES

[1] A Hundred Most Popular Stocks. https://robinhood.com/collections/
100-most-popular.

[2] Fifty Most Important People for Investors to
Follow. https://www.marketwatch.com/story/
finance-twitter-the-50-most-important-people-for-investors-to-follow-2018-12-13.

[3] Thirty Must-Follow Twitter News Accounts in
2019. https://medium.com/@intellfusionmarketing/
30-must-follow-twitter-accounts-for-news-in-2019-e981595759a5.

[4] W. Bao, J. Yue, and Y. Rao. A deep learning framework for financial
time series using stacked autoencoders and long-short term memory.
PloS one, 12(7):e0180944, 2017.

[5] S. Borovkova and I. Tsiamas. An ensemble of lstm neural networks
for high-frequency stock market classification. Journal of Forecasting,
2019.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020.

[7] A. Conneau and G. Lample. Cross-lingual language model pretraining.
In NeurIPS, pages 7057–7067, 2019.

[8] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length
context. In ACL, pages 2978–2988, 2019.

[9] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In NAACL-
HLT, pages 4171–4186, 2019.

[10] B. Ellickson, M. Sun, D. Whang, and S. Yan. Estimating a local heston
model. SSRN 3108822, 2018.

[11] V. Flunkert, D. Salinas, and J. Gasthaus. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. CoRR, abs/1704.04110,
2017.

[12] J. Gasthaus, K. Benidis, Y. Wang, S. S. Rangapuram, D. Salinas,
V. Flunkert, and T. Januschowski. Probabilistic forecasting with spline
quantile function rnns. In AISTATS, pages 1901–1910, 2019.

[13] Y. Gu, D. Yan, S. Yan, and Z. Jiang. Price forecast with high-frequency
finance data: An autoregressive recurrent neural network model with
technical indicators. In CIKM, 2020.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[15] T. Kim and H. Y. Kim. Forecasting stock prices with a feature fusion
lstm-cnn model using different representations of the same data. PloS
one, 14(2):e0212320, 2019.

[16] N. Kitaev, L. Kaiser, and A. Levskaya. Reformer: The efficient
transformer. In ICLR, 2020.

[17] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Sori-
cut. ALBERT: A lite BERT for self-supervised learning of language
representations. In ICLR, 2020.

[18] A. Mittal and A. Goel. Stock prediction using twitter sentiment analysis.
Standford University, CS229, 15, 2012.

[19] Z. Qi, Z. Bu, X. Xiong, H. Sun, J. Cao, and C. Zhang. A stock index
prediction framework: Integrating technical and topological mesoscale
indicators. In IRI, pages 23–30, 2019.

[20] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving
language understanding by generative pre-training. 2018.

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language models are unsupervised multitask learners. OpenAI Blog,
1(8):9, 2019.

[22] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and
T. Januschowski. Deep state space models for time series forecasting.
In NeurIPS, pages 7796–7805, 2018.

[23] T. T. Souza and T. Aste. Predicting future stock market structure
by combining social and financial network information. Physica A:
Statistical Mechanics and its Applications, 535:122343, 2019.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. In NeurIPS,
pages 5998–6008, 2017.

[25] Y. Xu and S. B. Cohen. Stock movement prediction from tweets and
historical prices. In I. Gurevych and Y. Miyao, editors, ACL, pages
1970–1979. Association for Computational Linguistics, 2018.

[26] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le. Xlnet: Generalized autoregressive pretraining for language
understanding. In NeurIPS, pages 5754–5764, 2019.

[27] L. Zhang, P. A. Mykland, and Y. Aı̈t-Sahalia. A tale of two time
scales: Determining integrated volatility with noisy high-frequency data.
Journal of the American Statistical Association, 100(472):1394–1411,
2005.

[28] Z. Zhang, S. Zohren, and S. J. Roberts. Deeplob: Deep convolutional
neural networks for limit order books. IEEE Trans. Signal Processing,
67(11):3001–3012, 2019.

